Neutrino Factory Acceleration

J. Scott Berg Brookhaven National Laboratory NuFact07 Summer School 3 August 2007

Acceleration Goals

- Start with beam after cooling
- Accelerate to energy at storage ring
 - □ 20–50 GeV, depending on physics
- Preserve beam emittance
 - □ Transverse beam size, angles
 - Longitudinal: energy spread, bunch length
- Avoid excessive muon decays
- Accelerate both muon signs

Typical Initial Beam Characteristics

- Kinetic energy around 120 MeV
- Normalized transverse acceptance: 30 mm
 - Varies with amount of cooling
- Normalized longitudinal acceptance: 150 mm
 - □ Number for 200 MHz system
 - Varies with RF frequency choice
- Both signs of muons
- \circ Muons per sign per second: 2×10^{14} (4 MW)

Transverse Acceptance

- Acceleration transmits all particles in ellipse
- Particles outside may be lost
- Normalized
 acceptance: area of ellipse divided by mcπ

Incoming Bunch Train Characteristics

- ○200 MHz system described
- 50 groups of 1 or more bunch trains per second
 - Proton driver, acceleration power use
- Bunch trains of 70–90 bunches
 - □ Bunch separation 5 ns (200 MHz period)
 - Only this changes when frequency changes
- \circ All trains (1–5) in group occur within 40 μ s or so
 - □ Target constraint

Incoming Bunch Train Characteristics

RF Cavity Basics

- RF cavity creates sinusoidally oscillating electric field, parallel to beam direction
- \circ Depending on particle timing, increase or decrease energy by $\leqslant qV$

Cavity Stored Energy

- Standing wave in nearly closed cavity produces accelerating field
- \circ Stored energy proportional to V^2

$$U = \frac{V^2}{\omega R/Q}$$

Power Delivery

- Power delivered to cavity
 - Increase stored energy
 - Counteract energy losses
- Cavity loses energy
 - \square Resistive losses into walls: $\propto V^2$
 - \square Power leaves the way it comes in: $\propto V^2$
 - Energy delivered to beam

$$\frac{dU}{dt} = P - \frac{V^2}{R} - IV = P - \frac{\omega U}{O} - IV$$

Power Delivery Increase Stored Energy

- \circ Constant power input: $U \to QP/\omega$
- \circ Time scale to fill: Q/ω
- \circ Width of cavity resonance: ω/Q
- Desire reduced power requirements
 - Reduce wall losses: superconducting
 - Bandwidth too narrow: cavity vibrations
 - Replace energy lost to beam anyhow
 - Allow more power in/out of coupler
 - Power through coupler limited

Cavity Breakdown

- There is a maximum value for V
- Caused by local maximum for fields
 - □ Room temperature: max electric, near iris
 - Superconducting: max magnetic, outer part
- Ratio of local maximum to accelerating field
 - Depends on geometry: keep low
- Achieve highest breakdown V possible
 - Structures expensive (superconducting!)

RF Cavity Size

- Cavity size scales inversely with frequency
- 200 MHz cavities huge
- Can make smaller for given frequency

- Max field to accelerating voltage ratio higher
- Less accelerating voltage

RF System Requirements

- Keep average accelerating field high: decays
- Keep RF power required low
- Sufficient transverse aperture for beam
- Sufficient longitudinal acceptance
- Use fewer cavities: cost

Linac

- Sequence of RF cavities in a straight line
- Interleaved magnets for transverse focusing
- Easiest, but most expensive option
 - □ RF systems are expensive
 - One pass through each cavity
- Longitudinal motion
 - Particles locked in time relative to each other
 - Exception: very beginning

Linac: Focusing

- Use solenoid focusing
- Low energies: solenoids stronger than quadrupoles
- Smaller beam sizes for given distance between magnets
 - Solenoid focuses in both planes

Linac: RF Frequency

- 200 MHz bunches: any multiple of 200 MHz OK
- Forced to 200 MHz at beginning
 - Length of bunches
 - □ Aperture size

 - Magnet fields increase with shorter cell length
 - Superconducting cavities: space between magnets and cavities

Linac: RF Frequency Higher Energies

- Could increase RF frequency at higher energy
 - Benefits
 - Reduced power requirements
 - Easier to generate high powers
 - Lower cavity cost
 - Beam sizes smaller for given cell length
 - Difficult to reduce bunch length

Time of Flight Variation with Amplitude

- Particles with large transverse amplitudes arrive later
 - □ Angles particles make w.r.t. axis
- High ampltiude: lose synchronization with RF
- Limits amount of linac one can use
 - Length matters: reduced by higher gradient

Time of Flight Variation with Amplitude: Synchrotron Oscillations

- Cure: synchrotron oscillations
 - □ Accelerate on slope of RF
 - □ Fall behind: accelerated more, catch up
 - □ Arrive early: accelerated less, fall back
- Relativistic energies in linac
 - Velocity independent of energy
 - Must introduce bending
 - Path length depends on energy

Cavity Re-Use

- RF systems are the most expensive part
- Make multiple passes through cavities
 - Arcs that guide beam back through cavities
- Maximize passes through cavity to reduce cost

Beam Loading

- \circ Beam extracts energy from cavity: $\Delta U = -QV$
- Multiple passes: more energy extracted
 - Energy not extracted is wasted
 - Problem with high rep rate
 - Introduces current dependence
- Different bunches in train see different voltages
- Higher frequency, effect stronger
 - Less stored energy

Beam Loading: Correction

- Add RF power
 - □ Bunch-to-bunch: impossible, time too short
 - \neg Pass-to-pass ($\approx 1 \ \mu$ s): very high (12 MW)
- Thus, run on stored energy
 - □ Average power

 main pulse rep rate
- Synchrotron oscillations
- RF slightly off frequency
- Time dependence on energy, then RF

Ramping Synchrotron

- Circular ring containing RF cavities
- Magnetic field proportional to beam momentum
 - Requires rapid variation of fields
 - Example: 4–20 GeV, average gradient
 1.5 MV/m, 35 μs
- Problems with rapid field variation
 - Eddy currents (losses, undesirable fields)
 - Use thin magnet laminations
 - Power delivery

Ramping Synchrotron Power Delivery

- Example parameters
 - □ 500 m circumference, 4–20 GeV, 15 cm radius aperture
 - □ Max field ≥ 0.84 T
 - □ 10 MJ stored energy
 - □ 0.3 TW peak power to magnets
 - □ If energy lost: 500 MW average power!
 - Not this bad: most energy recovered

RLA

- Ramping magnets not practical
- Separate arc for each pass
 - Adjust arc length to keep RF synchronized
- Arcs make path length depend on energy
 - Synchrotron oscillations

RLA: Switchyard

- Magnet separates beams into separate arcs
 - Based on energy
- Highest energy on one pass can't overlap lowest on next
- Extra space for transverse size
- Extra space for coils
- Must maintain focusing: more than just dipole
- Practical limit: 4–5 passes

Dogbone RLA

- Change geometry to improve efficiency
- Use single linac, both directions
- Increase separation at switchyard, or
- Use less linac
- Arcs cross
 - Vertical bend, or
 - Low energy arc outside high energy
- Two bending directions complicates

RLA Design Considerations

- Each arc designed for single energy
 - □ At low energy, energy spread large (few %)
 - Requires nonlinear magnets
- Linac: many different energies
 - Use FODO lattice so it works at all energies
 - Velocity different on each pass
 - RF synchronization at low energy
 - Limits lowest energy

Fixed Field Alternating Gradient Accelerators (FFAGs)

- Make more passes through cavities
 - Eliminate switchyard
- Keep magnetic fields fixed
- All energies in same arc
 - This is the challenge
- Why not cyclotron?
 - Can't do relativistic energies
- Bending and focusing in same magnets

FFAGs Large Energy Range Accelerated

- Reason for difficulty: resonances
- Particles oscillate about closed orbit
- Frequency of oscillation depends on energy
- Integer of half integer number of oscillations: resonance
 - Particles move exponentially away from closed orbit
- $\circ n$ oscillations in m turns: nonlinear resonance

FFAGs: Time of Flight

- Time of flight depends on energy
 - Velocity variation with energy (small)
 - Path length variation with energy
- Must keep synchronized with RF
 - Vary RF frequncy
 - Rapid acceleration: can't adjust RF phase
 - Would require large RF power
 - Limited number of turns
 - Get more turns with lower frequency

Scaling FFAG

- Method to avoid resonance problem
 - Oscillation frequency independent of energy
- Know method to achieve this:

$$B_{y}(r,\theta,0) = B_{0}(\theta)(r/r_{0})^{k}$$

- Strong variation of time of flight with energy
- Magnet apertures
 - Superconducting at higher energies
 - □ Relatively large (>50 cm): expensive

Scaling FFAG Longitudinal Dynamics

Time of flight varies monotonically with energy

$$\frac{\Delta T}{T} = \left(\frac{1}{k+1} - \frac{1}{\gamma^2}\right) \frac{\Delta p}{p}$$

- Fixed RF frequency
- Half synchrotron oscillation
 - Synchronized to RF near central energy
 - □ Cross crest twice

BROOKHAVEI NATIONAL LABORATO 33

Scaling FFAG Longitudinal Dynamics

- Low frequency required
 - Low gradient
 - High power at low frequency
 - □ Few turns
- Not compatible with cooling
- NufactJ scheme
 - Use FFAGs starting with capture
 - □ RF frequencies 6.5–26 MHz

Scaling FFAGs Harmonic Number Jump

- Different number of RF periods on each pass
 - Approximately same phase
- Allows high frequency RF
 - Won't accelerate both muon signs
 - Ring filled with caviites
 - Problem making cavity wide enough
- Time not linear function of energy
 - Acceleration must depend on position

Scaling FFAGs Spiral Sector

- Magnets have a spiral angle
 - Edge angle gives focusing effect
- Potentially allows aperture reduction
- Used in many cyclotrons
- Complexity of making magnets
 - Especially for high fields

Radial vs. Spiral Sector

Non-Scaling FFAG Motivation

- Why not scaling FFAG?
 - Large aperture superconducting magnets
 - Low frequency RF
- Non-scaling FFAG addresses these
 - Reduces magnet apertures
 - □ Allows high-frequency (200 MHz) RF

Non-Scaling FFAG Basic Principles

- Must avoid resonance
 - Make every cell identical
 - Only need consider single cell
 - Errors still give weak resonances
 - Cyclotrons do this
 - Make magnets linear
 - Avoid nonlinear resonances
- Rapid acceleration
 - Pass through resonances quickly

Non-Scaling FFAG Dispersion

- Closed orbits vary with energy
 - Gives magnet aperture requirement
 - Determines time of flight variation
- Put bending in horizontally defocusing magnet
 - Less orbit variation with energy
 - \square Would require k < -1 in scaling FFAG
 - Never been done
 - Never been proven impossible...

Non-Scaling FFAG Longitudinal Dynamics

- Time of flight parabolic with energy
 - Minimizes time of flight range
 - Allows higher frequency RF
 - Possible due to small dispersion
- Synchronized to RF at two points
- Serpentine path in longitudinal phase space
 - Crosses crest three times
 - More time before going off-crest

Non-Scaling FFAG Longitudinal Dynamics

Non-Scaling FFAG Lattice Design

- Short cells important
 - Reduces aperture, time of flight variation
 - Need space for RF cavities
- Longer machine, smaller aperture
 - Bends reduced, dispersion reduced
- Maintain average accelerating gradient
 - Longer ring means fewer passes
- Makes low-energy FFAGs impractical

Non-Scaling FFAG Time vs. Transverse Amplitude

- Time of flight depends on transverse amplitude
- Phase space different at different amplitudes
- High amplitude particle fall behind
- Makes many FFAG stages difficult
- Improvements
 - Higher gradient makes better
 - Makes FFAGs less efficient
 - Correct chromaticity: dynamic aperture

Non-Scaling FFAG Time vs. Transverse Amplitude

Beam Loading

- Bunch trains within group
 - \square Separated by as little as 17 μ s
- Each train extracts energy from cavities
 - □ More passes, more energy
- Each train should gain the same energy
 - Must replace energy extracted
 - □ 15 turns, 17 MV/m, 3 groups, 20 μs between: 4 MW!

Beam Loading Addressing the Problem

- Input coupler can handle 1 MW...
- Don't run multiple trains
- Run lower voltage
 - Makes decay, time of flight problem worse
- Different phase for each train (frequency offset)
- Create a better input coupler
- More time between trains
 - Target, proton driver may forbid

Overall Acceleration System

- First linac can't go too high
- Non-scaling FFAGs can't go too low
- RLA (dogbone?) in-between

